GLEASON'S THEOREM FOR VECTOR-VALUED MEASURES ON PROJECTORS JBW-ALGEBRAS

Main Article Content

A. A. Adizov

Abstract

Let JBW algebra [1,2,3] with no direct summand of type  ,and let  be its lattice of idempotents from  and  be a Banach space. In this paper, we prove that any finitely additive vector-valued measure  has a unique extension to a bounded linear operator mapping   to  .


 

Article Details

How to Cite
A. A. Adizov. (2022). GLEASON’S THEOREM FOR VECTOR-VALUED MEASURES ON PROJECTORS JBW-ALGEBRAS. Galaxy International Interdisciplinary Research Journal, 10(7), 144–147. Retrieved from https://giirj.com/index.php/giirj/article/view/2560
Section
Articles

References

Shultz F.M. On normed Jordan algebras which are Banach dual spaces. J. Functional Analysis, 1979, vol. 31, №3, p. 360-376.

Сарымсаков Т.А., Аюпов Ш.А., Хаджиев ДЖ., Чилин В.И. Упорядоченные алгебры. Ташкент. “ФАН” , 1983.

Аюпов Ш.А. Классификация и представление упорядоченных йордановых алгебр. Ташкент. “ФАН”, 1986.

L. J. Bunce and J. D. M. Wright, The Mackey-Gleason problem. Bulletin (New Series) of the Amer. Math. Soc. 1992, vol. 26, № 2, p. 288-293.

L. J. Bunce and J. D. M. Wright, Continuity and linear extensions of quantum measures on Jordan operator algebras, Math. Scand. 64 (1989), 300-306). MR1037464 (91f:46096)

Topping D. Jordan algebras of self-adjoint operators. Mem. Amer. Math. Soc. 1965, № 53, p. 1-48.

Ayupov Sh.A., Extensionof traces and type criterions for Jordan algebras of self-adjoint operators. Math.Z., 1982, Vol.181.P. 253-268.

Topping D. An isomorphism invariant for spin factors. J. Math.Mech., 1966, vol.15, p. 1055-1064.