ABOUT ONE PROBLEM OF COOLING BODIES

I. I. Khaidarov

Kokand State Pedagogical Institute, 2nd Year Master

ANNOTATION

In this paper, an ordinary differential equation for cooling bread is compiled and the time spent on cooling bread in bakeries is found.

Keywords: body temperature, body cooling, differential equation, Newton's law, method of separation of variables.

INTRODUCTION

Решение задач физики или механики с помощью дифференциальных уравнений распадается на следующие этапы:

- а) составление дифференциального уравнения;
- б) решение этого уравнения;
- в) исследование полученного решения.

При этом рекомендуется следующая последовательность действий:

- 1. Установить величины, изменяющиеся в данном явлении, и выявить физические законы, связывающие их.
- 2. Выбрать независимую переменную и функцию этой переменной, которую мы хотим найти.
- 3. Исходя из условий задачи, определить начальные или краевые условия.
- 4. Выразить все фигурирующие в условии задачи величины через независимую переменную, искомую функцию и ее производные.
- 5. Исходя из условий задачи и физического закона, которому подчиняется данное явление, составить дифференциальное уравнение.
- 6. Найти общее решение или общий интеграл дифференциального уравнения.
- 7. По начальным или краевым условиям найти частное решение.
- 8. Исследовать полученное решение.

Во многих случаях составление дифференциального уравнения первого порядка основывается на так называемой «линейности процесса в малом», т. е. на дифференцируемости функций, выражающих зависимость величин. Как правило, можно считать, что все участвующие в том или ином процессе величины в течение малого промежутка времени изменяются с постоянной скоростью. Это позволяет применить известные из физики законы, описывающие равномерно протекающие явления, для составления соотношения между значениями, т. е. величинами, участвующими в процессе, и их приращениями. Получающееся равенство имеет лишь приближенный характер, поскольку величины меняются даже за короткий промежуток времени, вообще говоря, неравномерно. Оно содержит время t, меняющиеся с течением времени физические величины и их производные, т. е. является дифференциальным уравнением, описывающим данное явление.

Таким образом, при составлении дифференциального уравнения мы делаем как бы «мгновенный снимок» процесса в данный момент времени, а при решении уравнения по этим мгновенным снимкам восстанавливаем течение процесса. Итак, в основе решения помощью дифференциальных уравнений лежит физических залач обшая функций линеаризации замены на малых промежутках изменения линейными функциями. И аргумента ктох встречаются процессы (например, броуновское движение), для которых линеаризация невозможна, потому что не существует скорости изменения некоторых величин в данный момент времени, в подавляющем большинстве случаев метод дифференциальных уравнений безотказно.

Известно что, если в дифференциальном уравнении первого порядка функции M и N представлены в виде

$$M(x, y) = f_1(x)\varphi_1(y), N(x, y) = f_2(x)\varphi_2(y),$$

то уравнение

$$M(x,y)dx + N(x,y)dy = 0 (1)$$

примет вид дифференциального уравнения с разделяющимися переменными

$$f_1(x)\varphi_1(y)dx + f_2(x)\varphi_2(y)dy = 0.$$
 (2)

Делим уравнение (2) на $f_2(x)\varphi_1(y)$, откуда

$$\frac{f_1(x)}{f_2(x)}dx + \frac{\varphi_2(y)}{\varphi_1(y)}dy = 0$$

или

$$R(x)dx + S(y)dy = 0, (3)$$

где переменные x и y разделены.

Общий интеграл уравнения (3)

$$\int R(x)dx + \int S(y)dy = C.$$
(4)

Если $\varphi_1(y)$ и $f_2(x)$ равны единице, то уравнение (2) вырождается в простейшее дифференциальное уравнение с разделенными переменными, общий интеграл которого получается непосредственным интегрированием:

$$\int f_1(x)dx + \int \varphi_2(y)dy = C.$$

Постановка задачи

Температура вынутого из печи хлеба в течение 20 *мин* падает от 100 до 60° C (рис. 1). Температура окружающего воздуха 25°C. Через какое время от момента начала охлаждения температура хлеба понизится до 30° C?

Решение. Скорость охлаждения тела представляет понижение температуры T в единицу времени τ и выражается производной $\frac{dT}{d\tau}\cdot$ По закону Ньютона скорость охлаждения тела пропорциональна разности температур тела и окружающей среды. Это процесс неравномерный. С изменением разности температур меняется и скорость охлаждения тела.

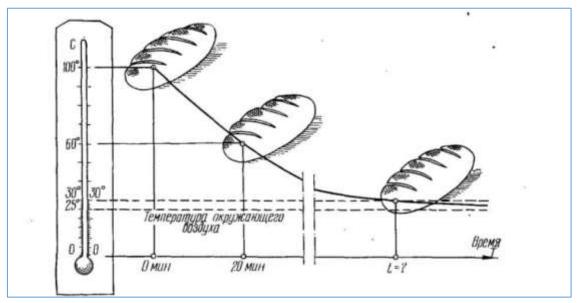


Рис-1

Дифференциальное уравнение охлаждения хлеба будет

$$\frac{dT}{d\tau} = k \left(T - t \right),\,$$

где T — температура хлеба, t — температура окружающего воздуха, k — коэффициент пропорциональности, $\frac{dT}{d\tau}$ — скорость охлаждения хлеба.

Пусть au — искомое время охлаждения. Тогда, разделяя переменные, получим

$$\frac{dT}{T-t} = kd\tau.$$

Для условий задачи

$$\frac{dT}{T-25} = kd\tau.$$

Ввиду того что

$$\frac{dT}{T-25} = \frac{d(T-25)}{T-25},$$

интегрируя, получаем

$$\int \frac{d(T-25)}{T-25} = k \int d\tau$$

или

Vol. 10, Issue 2, Feb. (2022)

$$\ln(T-25) = k\tau + \ln C.$$

Потенцируем обе части последнего равенства:

$$e^{\ln(T-25)} = e^{k\tau + \ln C} = e^{k\tau} \cdot e^{\ln C}.$$

Так как

$$e^{\ln C} = C,$$

то

$$T - 25 = Ce^{k\tau}. (1)$$

Произвольную постоянную $\,C\,$ определяем из начального условия : при $\, au=0\,\,$ мин $\,T=100^\circ.$ Отсюда

$$100-25=Ce^{k\cdot 0}=C$$
 или $C=75$.

Величину e^k определяем, исходя из данного дополнительного условия: при $au=20\,$ мин $T=60^\circ$. Получаем

$$60 - 25 = 75 \left(e^{k}\right)^{20}$$

и

$$e^k = \left(\frac{35}{75}\right)^{\frac{1}{20}} = \left(\frac{7}{15}\right)^{\frac{1}{20}}.$$

Уравнения охлаждения хлеба в условиях задачи примет вид

$$T = 75\left(\frac{7}{15}\right)^{\frac{2}{20}} + 25. \tag{2}$$

Из уравнения (2) определяем искомое время au при температуре хлеба $T=30^{\circ}$:

$$5 = 75 \left(\frac{7}{15}\right)^{\frac{\tau}{20}}$$
 или $\frac{1}{15} = \left(\frac{7}{15}\right)^{\frac{\tau}{20}}$.

Окончательно,

$$au = \frac{-20 \ln 15}{\ln 7 - \ln 15} \approx \frac{-20 \cdot 2,7081}{-0.7622} \approx 71$$
мин.

Итак, после 1 ч 11 *мин* хлеб охлаждается до температуры 30° С.

Известно что, выпеченный хлеб в пекарнях сортируется по видам, укладывается на специальные деревянные лотки и на вагонетках перемещаются к месту хранения, продажи или упаковки. Хлебобулочные изделия могут фасоваться в обычные бумажные или полиэтиленовые пакеты, или в герметичную упаковку при помощи специальных запаивателей упаковки. Хранить хлеб необходимо в чистых и сухих вентилируемых помещениях с относительной влажностью 75% и температурой воздуха 20-25%. В процессе хранения хлеб начинает черстветь и усыхать. В результате усушки из хлеба испаряется влага, и он начинает терять в весе. Наиболее интенсивно усыхает горячий хлеб, остывая до комнатной температуры, он теряет до 2-4 % веса. В этот период избежать усушки

GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ) ISSN (E): 2347-6915 Vol. 10, Issue 2, Feb. (2022)

поможет активная вентиляция места хранения (но когда хлеб остынет до комнатной температуры, вентиляция наоборот, лишь ускорит усушку).

Очерствение хлеба начинается через 8-10 часов после выпечки. Корка становится мягкой, а мякиш наоборот, становится жестче и начинает крошиться. Хлеб черствеет из-за того, что входящий в его состав крахмал теряет влагу, уменьшаясь в объеме. Структура хлеба нарушается, мякиш начинает крошиться. Полностью избежать усушки и очерствения хлеба нельзя, но можно замедлить эти процессы при помощи упаковки. Качественная герметичная упаковка позволяет увеличить срок хранения хлеба до 5 дней и отсрочить начало очерствения. Кроме того, она защищает продукцию от бытовых загрязнений во время хранения, транспортировки и разгрузки.

Если упаковывать изделия в горячем виде, то эта влага скапливается внутри упаковки, что приводит к намоканию корки и потере товарного вида хлебной продукции. Упаковывание совершенно холодного хлеба, который уже потерял значительное количество влаги в процессе остывания (усушка), также нецелесообразно, так как в таком хлебе заметно увеличивается скорость черствения. Именно поэтому определение оптимального периода охлаждения хлебобулочных изделий может обеспечить увеличение продолжительности его хранения в упакованном виде при одновременном сохранении хороших потребительских свойств и товарного вида.

Первый способ. Охлаждение хлеба и булочных изделий массой 0,3 кг и более на контейнерах ХКЛ-18 или других марок непосредственно в остывочном отделении или экспедиции хлебозавода. При этом необходимо:

- устанавливать контейнеры или вагонетки на расстоянии 15-25 см друг от друга в ряду и между рядами;
- организовать принудительный обдув блока контейнеров или вагонеток холодным воздухом, подаваемым специальным вентилятором (предпочтительно через фильтр), обеспечивающим скорость движения воздуха 0,2-0,3 м/с и равномерное распределение его потока по высоте контейнера или вагонетки.

При использовании этого способа продолжительность охлаждения хлеба перед упаковкой составляет:

- ржано-пшеничного и пшеничного формового хлеба массой 0,6-1,0 кг до температуры $35\text{-}36^{\circ}\mathrm{C}$ в центре мякиша 90-120 мин;
- ржано-пшеничного и пшеничного хлеба подового массой 0,6-1,0 кг до температуры 30-34°C в центре мякиша 80-100 мин;
- батонов из пшеничной муки высшего и первого сорта массой 0.3-0.5 кг до температуры в центре мякиша 30-34 С 60-70 мин.

Ориентировочные расчеты показали, что для охлаждения 24 тонн батонов в сутки на контейнерах XKЛ-18 потребуется дополнительная площадь в размере 42,5-50 м².

Второй способ. Охлаждение хлеба осуществляют на открытых или закрытых спиральных конвейерах различных фирм. Они бывают округлой и овальной формы, могут быть различной высоты и должны иметь систему принудительного вентилирования.

Продолжительность остывания хлеба в этих условиях составляет:

GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ) ISSN (E): 2347-6915 Vol. 10, Issue 2, Feb. (2022)

- ржано-пшеничного и пшеничного хлеба формового массой 0,6-1,0 кг до температуры в центре мякиша 35-36°C 80-100 мин;
- ржано-пшеничного и пшеничного хлеба подового массой 0,6-1,0 кг до температуры в центре мякиша 32-34°C 60-80 мин;
- батонов из пшеничной муки массой 0.3-0.5 кг до температуры в центре мякиша 30-34 °C 40-60 мин.

Для уменьшения обсемененности плесневыми грибами поверхности хлебобулочных изделий при их движении по спиральному транспортеру проводится периодически облучение бактерицидными лампами, а при подходе к упаковочным машинам хлебобулочные изделия движутся под прозрачной крышкой, что обеспечивает подачу почти стерильной продукции на приемные устройства упаковочной машины или к машине для нарезания хлеба на ломти с последующей их упаковкой.

Третий способ. Охлаждение мелкоштучных булочных изделий перед упаковкой проводят в специальных небольших камерах, поскольку такие изделия имеют небольшую массу (0,05-0,2 кг), остывание их происходит быстро — в течение 25-40 мин после выхода из печи. Камеры для охлаждения и хранения мелкоштучных изделий могут иметь различные конструктивные решения в зависимости от конкретных условий предприятия.

На небольших предприятиях целесообразно создавать тупиковые помещения площадью 12 м2 с потолком не выше 2-х метров, на хлебозаводах средней и большой мощности специальные проходные камеры, выполненные из любых материалов, площадью от 18 до 60 м2, облицованные изнутри на высоту помещения глазированной плиткой или моющейся пленкой.

В отдельных случаях используются специальные камеры, внутри обитые деревом и сверху закрытые полиэтиленовой пленкой. Такие камеры рекомендуется изготавливать с использованием металлического каркаса. Полиэтиленовое покрытие в этом случае делают 1-2-х слойным. Камера выполняется в виде пространственной конструкции, сваренной из уголков размером 50х50 мм.

Высота внутреннего помещения камер всех типов должна быть в пределах 2,0-2,1 метра. В тупиковых камерах проемы завешивают плотной тканью - сукном, джинсовой тканью и др. Дверные проемы проходных камер должны быть плотно пригнаны с тем, чтобы внутри камеры не создавались сквозняки. С целью уменьшения сквозняков при нагрузке и выгрузке камеры дверные проемы целесообразно располагать под прямым углом друг к другу. При устройстве камер необходимо предусмотреть проезд пустых контейнеров мимо камеры с хранящимися изделиями, а не через нее.

При загрузке камеры лотками с мелкоштучными изделиями необходимо предусмотреть полки или направляющие для лотков вдоль стен камеры на высоте от 0,4 до 1,8 м. Крепление полок или направляющих должно обеспечивать возможность их санитарной обработки.

В процессе эксплуатации внутри камеры за счет остывания изделий и испарения влаги создается микроклимат с повышенной температурой и высокой влажностью. Эти условия, с одной стороны, снижают усушку изделий и их черствение, а с другой, способствуют быстрому развитию плесеней, которые будут заражать не только внутренние стенки камер,

GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ) ISSN (E): 2347-6915 Vol. 10, Issue 2, Feb. (2022)

но и поверхность хлебобулочных изделий. Для обеззараживания воздуха и поверхности оборудования внутри камеры под ее потолком или на стенах можно устанавливать ультрафиолетовые бактерицидные лампы. Облучение должно проводиться в течение 1-2-х часов каждые сутки при наименьшей загруженности камеры. Включение ламп должно проводиться снаружи камеры.

Периодически, но не реже одного раза в две недели, стенки и потолки должны подвергаться влажной санитарной обработке раствором любого разрешенного дезинфицирующего средства в соответствии с инструкцией по его применению. В таких камерах мелкоштучные изделия могут храниться до упаковки в течение 3-4-х часов без существенной потери потребительских свойств и товарного вида.

Использование различных упаковочных материалов может вносить некоторые изменения при проведении охлаждения хлебобулочных изделий перед упаковкой. Так, при упаковке хлеба в бумажные пакеты нет необходимости его охлаждать, так как бумага хорошо пропускает пары воды, и горячий хлеб при упаковке не теряет своих потребительских свойств. Однако такие пакеты не позволяют увеличить срок хранения по сравнению с неупакованными изделиями.

Некоторые фирмы создали упаковочные материалы с селективными свойствами по паропроницаемости. При использовании таких упаковочных материалов способ и продолжительность охлаждения изделий разрабатываются с учетом рекомендаций фирмы, поставляющей упаковочный материал.

Заключение: Сравнивая наше решение с экспериментальными данными мы можем сделать вывод что они приблизительно равны, то есть мы вычислили время остывания хлеба аналитически. Далее для увеличения рентабельности предприятия инженеры, технологи и экономисты должны просчитать и выбрать способы уменьшения времени остывания хлеба.

ЛИТЕРАТУРА

- 1. Еругин Н.П. Книга для чтения по общему курсу дифференциальных уравнений. Минск: Наук и техника. 1979. 794с.
- 2. Derrick W.R., Grossman S.I. Elementary differential equations with applications.-2-nd eq-Reading.Mass;Addision-Wesley,1981.-532 p.